plus one leetcode solution

Plus One LeetCode Solution is a common coding problem that many aspiring
software developers face when preparing for technical interviews. This
problem is straightforward yet challenges your understanding of arrays and
number manipulation. In this article, we will delve into the problem
statement, present various approaches to solve it, and provide a
comprehensive explanation of the optimal solution, including a Python
implementation. By the end of this article, you will have a clear
understanding of the Plus One problem and how to tackle it efficiently.

Understanding the Problem Statement

The Plus One problem is defined as follows: You are given a non-empty array
of digits representing a non-negative integer. The digits are stored such
that the most significant digit is at the head of the array, and each element
in the array contains a single digit. The goal is to increment the integer by
one and return the resulting array of digits.

For example:
- Input: [1, 2, 3]
- Output: [1, 2, 4]

In this example, the integer represented by the array is 123. When we add one
to it, we get 124, which is represented as [1, 2, 4].

However, there are edge cases to consider:
- Input: [9]
— Output: [1, O]

In this case, adding one to 9 results in 10, which requires us to add an
additional digit to the array.

Approaches to Solve the Plus One Problem

There are various approaches to solve the Plus One problem, each with its own
pros and cons. Here are three common methods:

1. Simple Iterative Approach

This approach involves traversing the digits from the last index to the
first, adding one to the last digit, and managing the carry if the digit
becomes 10.

Steps:

- Start from the last digit.

- Add one to the last digit.

- If the result is less than 10, return the array.

— If the result is 10, set the last digit to 0 and carry over the one to the
next digit.

— Continue this process until there are no more digits to process.



— If there’s still a carry after processing all digits, prepend 1 to the
array.

2. Using Python's Built-in Functions

Another approach is to convert the array of digits into a single integer,
perform the addition, and convert it back to an array. This method is less
efficient as it involves type conversion, but it’s straightforward.

Steps:

— Convert the list of digits to a string and then to an integer.

— Add one to the integer.

— Convert back to a string and split it into individual digits, returning
them as a list.

3. Optimized Approach Using List Manipulation

This is a more efficient approach that combines the strengths of both the
iterative and built-in function methods. It minimizes the overhead of type
conversion while handling carries elegantly.

Steps:

- Traverse the list from the last digit to the first.

— Increment the last digit and check for carry.

— If carry exists, continue adjusting the digits until there is no carry or
until all digits are processed.

- If all digits are processed and still have a carry, insert a new digit at
the front.

Optimal Solution Implementation

In this section, we will provide a Python implementation of the optimal
solution, which utilizes the iterative approach while efficiently managing
carries.

" “python
def plusOne (digits):
n = len(digits)

for 1 in range(n - 1, -1, -1):

if digits[i] < 9:

digits[i] += 1

return digits

digits[i] = 0 Set current digit to 0 if it becomes 10

If we reach here, it means all digits were 9
return [1] + digits Prepend 1 to the list



Explanation of the Code

- We start by determining the length of the input array " digits’.

— We loop through the array in reverse order, checking each digit.

- If a digit is less than 9, we simply add one and return the updated list.

- If a digit is 9, we set it to 0 (handling the carry).

- After the loop, if we’ve set all digits to 0, we return a new list starting
with 1 followed by the zeros.

Time and Space Complexity

When evaluating the efficiency of our solution, we should consider both time
and space complexity.

Time Complexity

— The time complexity of our solution is O(n), where n is the number of
digits in the input list. In the worst-case scenario, we might need to
iterate through all digits once.

Space Complexity

— The space complexity is O(1) if we don’t count the output array. However,
since we may need to return a new list (in cases where all digits are 9), the
space complexity can be considered O(n) for the output.

Conclusion

In conclusion, the Plus One LeetCode solution presents a valuable exercise in
array manipulation and carry handling. By understanding the problem statement
and implementing various approaches, you can gain deeper insights into
algorithm development. The iterative method provided is efficient and
concise, making it a suitable choice for technical interviews. Mastering this
problem not only enhances your coding skills but also prepares you for more
complex challenges in coding interviews.

Frequently Asked Questions

What is the 'Plus One' problem on LeetCode?

The 'Plus One' problem on LeetCode requires you to take an array of digits
representing a non—-negative integer and increment the integer by one. The
challenge is to return the resulting array of digits.



How do you approach solving the 'Plus One' problem?

To solve the 'Plus One' problem, you start from the least significant digit
(the rightmost one) and add one to it. If it results in a value of 10, you
set that digit to 0 and carry over 1 to the next digit. This process
continues until there are no more digits to process or the carry is zero.

What is the time complexity of the optimal solution
for 'Plus One'?

The time complexity of the optimal solution for the 'Plus One' problem is
O(n), where n is the number of digits in the input array. This is because in
the worst-case scenario, you may have to traverse the entire array.

Can the input array for 'Plus One' contain leading
zeros?

No, the input array for the 'Plus One' problem is expected to represent a
non-negative integer, which means it should not contain leading zeros, except
in the case where the number itself is zero.

What edge cases should I consider when implementing
the 'Plus One' solution?

You should consider edge cases such as an input array consisting of all 9s
(e.g., [9, 9, 9]1), which will require an increase in the size of the array.
Also, consider the case when the input is [0], which should return [1].

What are common mistakes to avoid when solving 'Plus
One' on LeetCode?

Common mistakes include not correctly handling the carry when incrementing
digits, forgetting to account for the case where an additional digit is
needed, and not returning the updated array properly.

How can I test my solution for the 'Plus One'
problem?

You can test your solution by using a variety of test cases, including edge
cases such as [9, 9, 9], [0], and [1, 2, 3]. Additionally, you can validate
your output against expected results to ensure correctness.

Plus One Leetcode Solution

Find other PDF articles:

https://parent-v2.troomi.com/archive-ga-23-47/files?dataid=jhR75-4365 &title=pocket-companion-for-
physical-examination-and-health-assessment.pdf



https://parent-v2.troomi.com/archive-ga-23-47/files?ID=LKJ83-0525&title=plus-one-leetcode-solution.pdf
https://parent-v2.troomi.com/archive-ga-23-47/files?dataid=jhR75-4365&title=pocket-companion-for-physical-examination-and-health-assessment.pdf
https://parent-v2.troomi.com/archive-ga-23-47/files?dataid=jhR75-4365&title=pocket-companion-for-physical-examination-and-health-assessment.pdf

Plus One Leetcode Solution

Back to Home: https://parent-v2.troomi.com


https://parent-v2.troomi.com

